Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Andriani, Sela"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    DETEKSI KOMENTAR SPAM PADA MEDIA SOSIAL INSTAGRAM MENGGUNAKAN METODE NAÏVE BAYES
    (wahyu sari yeni, 2019-01-31) Andriani, Sela; Salambue, Roni
    Text Mining is the process of finding new information or trends that were previously not revealed by processing and analyzing large amounts of data. In this thesis text mining is used to classify comments on Instagram social media. This technique aims to distinguish spam and not spam comments. One of the algorithms used in the classification is Naïve Bayes Classifier (NBC). In the NBC method, there are two stages, they are Training stage and the Testing Phase. Before the classification is done first the data will go through the Preprocessing stage, in which there are casefolding, stopcharacter removal, stopword, stemming and weighting. Evaluation to measure accuracy using Confussion Matrix which produces 93% Accuracy, 92% Precision, Recall 93.87% and Error Rate 7%.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback