Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Anggraini, Mila"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    METODE ALGORITMA C4.5 DAN NAÏVE BAYES UNTUK KLASIFIKASI TINGKAT KESEJAHTERAAN KESEHATAN MASYARAKAT PEKANBARU
    (perpustakaan UR, 2021-06) Anggraini, Mila; Adnan, Arisman
    The level of public health welfare in a country can determine the quality and circumstances of the country. The purpose of this study is to classify the level of public health welfare of Pekanbaru City in 2019. The study used C4.5 and Naïve Bayes algorithms with k-fold cross validation to predict the accuracy of classification and performance evaluation measure as evaluation of both models. Performance evaluation measure results with k-fold cross validation show that models with Naïve Bayes have better classification results than C4.5 algorithm models. This is because Naïve Bayes' accuracy, precision, sensitivity and specificity are greater than the C4.5 algorithm by 100%. This is also because Naïve Bayes obtained the result from the probability value of each attribute being free of each other.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback