Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Aulia, Feby Sukma"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    PENERAPANMETODE DEKOMPOSISI UNTUK PERAMALAN HARGA SAHAMPT BANKCENTRAL ASIA TBK
    (Elfitra, 2023-07) Aulia, Feby Sukma; Bustami, Bustami
    The stock price is an indicator of the success of a company. The higher and more stable the stock price, the better the company's value in the market. Shares are proof of ownership of capital invested by investors. The purpose of this study is to predict the stock price of PT Bank Central Asia Tbk using the decomposition method. The decomposition method is a time series data forecasting method that uses four components, namely seasonality, trend, cycles, and errors provided that the data contains trend and seasonal patterns. This study uses economic and business data regarding the closing price of shares of PT Bank Central Asia Tbk for the period 2018 – 2022. The results of this study obtained that the multiplicative model decomposition method is an excellent model with a MAPE acquisition of 3.81%. Stock price forecasting for the next period has increased with a tendency to decrease every June.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback