Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Gemawati, S."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    BEBERAPA SIFAT ALJABAR GENERALIZED INVERSE PADA MATRIKS
    (2014-03-25) Risa, Erma; Gemawati, S.; Sirait, Asli
    This article discusses some of the algebraic properties of the generalized inverse matrix on the addition operation, which is derived using the properties of the sum of the rank of matrices. Generalized inverse of the sum of two matrices can be obtained if the range space of the sum of two matrices is disjoint. At the end of the discussion, an example of how to get a generalized inverse matrix is given
  • No Thumbnail Available
    Item
    SIFAT-SIFAT KESETARAAN PADA MATRIKS SECONDARY NORMAL
    (2014-03-25) Nursyahlina, Nursyahlina; Gemawati, S.; Sirait, Asli
    A square matrix A is called a secondary normal matrix if AAθ = Aθ A, where Aθ is a secondary conjugate transpose of the matrix A, which is different from the conjugate transpose matrix. In this paper, we discuss some equivalent conditions of a secondary normal matrix that is if A is a secondary normal matrix then it exists a secondary unitary matrix P obtained by diagonalization and Gram-Schmidt process, such that Pθ A P = D, where D is a diagonal matrix. More over if A = VP and V is a secondary uniter matrix then A is a secondary normal matrix.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback