Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Hasanuddin, Hasanuddin"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    A Comparison of Radial Basis Probabilistic Neural Network and Radial Basis Function Neural Network Performance Based on Sensitivity Analysis
    (2018-02-19) Hasanuddin, Hasanuddin
    This paper presents a comparative study of the performance learning algorithm for Radial Basis Probabilistic Neural Network (RBPNN), and the Radial Basis Function Neural Network (RBFNN), are evaluated and compared for their ability to classify data based on sensitivity analysis. RBPNN generally performs similarly to RBFNN. Both of them are trained using gradient descent. In this research, sensitivity analysis is used to prune the feature data. The results show that the network still works well after pruning. The issues of network optimization and computational efficiency in use are discussed. Finally, to evaluate the performance, our experiments are demonstrated by two examples of real life data set.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback