Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kamandanu, Kamandanu"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    ANALISA PERBANDINGAN PERFORMA ALGORITMA CONVOLUTIONAL NEURAL NETWORK DALAM KLASIFIKASI GAMBAR ABJAD BAHASA ISYARAT INDONESIA
    (Elfitra, 2022-07) Kamandanu, Kamandanu; Mahdiyah, Evfi
    Background clutter is a background in an image that has a lot of noise or objects, making it difficult to focus on one object. Generally, images with a cluttered background are more common than images with a green background. The purpose of this study is to see whether the background image affects the performance of the convolutional neural network algorithm in classifying the Indonesian Sign Language Alphabet (BISINDO). This deep learning model uses 2860 images of primary data for each background with a total dataset of 5720 images, the data that has been collected is divided into training, validation and testing, 3x3 filter size, and a learning rate of 0.001 and 50 epochs. of 0.983, validation of 0.823 and testing of 0.67 for model 1 (Green Background), while for model 2 (Background Clutter) the training accuracy is 0.971, validation is 0.529 and testing is 0.38. It can be concluded tha a pictures with background clutter affects the accuracy of the model.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback