Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Karma, Asmara"

Now showing 1 - 13 of 13
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Keterbatasan Jari-Jari Spektral Suatu Matriks
    (2015-07-02) Karma, Asmara; M. Natsir
    Misalkan A =[ ajj] merupakan matriks kuadrat berukuran n x n dengan elemen bilangan kompleks, dan definisikaii P ( A ) merupakan jari-jari spektral dari A dan |A| merupakan matriks [ |ajj|]. A. Brawaer, W. Ledermann dan A. Ostrwski telah mengembangkan batasan untuk P ( A ) , sedangkan Perron dan Ferbenius tclah merumuskan batasan P ( A ) < P(|A|) yang merupakan batas bawah untuk P ( A ) yang mana tidak lebih besar dari P ( A ). Pada penelitian ini kita peroleh suatu barisan terbatas untuk p(A) didalam batas P(|Ar|), (r=1,2,3,…) yeng lebih besar atau sama dengan P( A) dan konvergen ke P ( A ) .
  • No Thumbnail Available
    Item
    METODE ITERASI BARU UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR
    (2014-04-12) Putra, Supriadi; Kurniawati, Ria; Karma, Asmara
    Kita akan mendiskusikan sebuah metode iterasi baru untuk menyelesaikan persamaan nonlinear satu variabel. Tulisan yang sama telah dilakukan sebelumnya oleh Eskandari, H. World Academy of Science, Engineering and Technology 44, 196-199 (2008). Akan tetapi disini akan dibuktikan orde kekonvergenan dari metode yang belum dilakukan oleh Eskandari. Perbandingan komputasi dari beberapa metode yang dibahas akan diberikan dengan memperhatikan jumlah iterasi, dan COC (Computational Order of Convergence) atau perhitungan orde konvergensi secara komputasi.
  • No Thumbnail Available
    Item
    METODE SIMPSON-LIKE TERKOREKSI
    (2014-03-25) Suryani, Ilis; Imran, M.; Karma, Asmara
    This paper discusses a derivation of the corrected Simpson-like method using a difference operator to approximate a definite integral, as a review of the article Ujevi ́, N. & A. J Roberts [ANZIAM Journal, 45 (2004): 41–56]. The computational c results show that the corrected Simpson-like method is better than Simpson method that is the method is exact for a fifth-order polynomial
  • No Thumbnail Available
    Item
    METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE DUA DENGAN KOEFISIEN VARIABEL
    (2013-06-17) Haryandi, Marpipon; Karma, Asmara; M, Musraini
    This paper discusses how to solve second order linear ordinary differential equations with variable coefficients using ELzaki’s transformation method, Euler’s method and the method of variation of parameters. Then described the ELzaki’s transformation properties to be used in solving second order linear ordinary differential equation with variable coefficients. From this review, ELzaki’s transformation method pro- duces particular solutions of second order linear ordinary differential equations with variable coefficients. While the Euler’s method and the method of variation of parameters only generate the general solution of second order linear ordinary differ-ential equations with variable coefficients.
  • No Thumbnail Available
    Item
    PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI
    (2016-04-27) Lisnan, Febrian; Karma, Asmara
    This article discusses the use of Adomian decomposition method to solve a variational problem in calculus of variation with known boundary conditions. Process begins by changing the variational problem into Euler-Lagrange equation, and then Adomian decomposition method is applied to the Euler-Lagrange equation. The obtained solution with this method is in a form of convergent power series. Comparison between the solutions obtained by Adomian decomposition method and the exact solution show the efficiency of the Adomian decomposition method.
  • No Thumbnail Available
    Item
    Perbaikan Proses Pembelajaran Mata Kuliah Kalkulus Peubah Banyak Di Jurusan Matematika
    (2015-07-04) M. Natsir; Karma, Asmara
    Dalam pelaksanaan pcrbaikan proses pembclajaran mata kuliah Kalkulus Peubah Banyak pada Jurusan Matematika FMIPA Universitas Riau dengan beberapa metode antara lain ccramah, diskusi dan tanya javvab yang materinya disesuaikan dengan Garis-garis Besar Program Pengajaran (CJBPP) serta dirinci dalam Satuan Acara Perkuliahan (SAP) berdasarkan silabus dan kurikulum jurusan Matematika FMIPA UNRI, diperoleh peningkatan mutu dan hasil belajar yang cukup signifikan, baik dari segi kehadiran dan keaktifan kuliah mahasiswa maupun dari hasil evaluasi akhir terhadap mata kuliah Kalkulus Peubah Banyak. Dari hasil evaluasi akhir yang telah dilaksanakan diperoleh data : - Rata-rata kehadiran jumlah mahasiswa dengan jumlah 51 orang adalah 96,23%. - Rata-rata IP mata kuliah Kalkulus Peubah Banyak 2,90 yang sebelumnya (th 00/01) hanya 2,81 sehingga terdapat peningkatan IP matakuliah Kalkulus Peubah Banyak sebesar 3,27% Sedangkan prosentase kenaikan berdasarkan kategori nilai Dari tahun sebelumnya (00/01) ketahun (01/02) adalah Nilai A dari 16,6% meningkat menjadi 9,86% Nilai B dari 60,4% meningkat menjadi 68,58% Nilai C dari 22,9% meningkat menjadi 21,56%
  • No Thumbnail Available
    Item
    SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT
    (2016-04-27) Harahap, Vera Alvionita; Karma, Asmara
    This article discusses the modi cation of Newton's method using the composite trapezoidal rule to approximate an inde nite integral in its derivation. It is analyti- cally demonstrated that the order of convergence of Newton's composite trapezoidal rule is three. Furthermore, computational tests show that the discussed method can be used as an alternative method in their class in solving nonlinear equations.
  • No Thumbnail Available
    Item
    SOLUSI SISTEM PERSAMAAN DIFERENSIAL PARSIAL DENGAN MENGGUNAKAN METODE PERTURBASI HOMOTOPI DAN METODE DEKOMPOSISI ADOMIAN
    (2016-02-04) Rahmadayani, Ita; Syamsudhuha; Karma, Asmara
    This article discusses the solutions of systems of partial differential equations using the homotopy perturbation method and Adomian decomposition method. A numerical example shows that the solution of the partial differential equation obtained by the homotopy perturbation method is better than those of Adomian decomposition method in terms of the speed to approach the exact solution.
  • No Thumbnail Available
    Item
    SOLUSI SISTEM PERSAMAAN INTEGRAL VOLTERRA LINEAR DENGAN MENGGUNAKAN METODE MATRIKS EULER
    (2016-02-04) Sitanggang, Marison Faisal; Karma, Asmara
    This article discusses the solution of system of linear Volterra integral equations in the form of series in Euler polynomials with certain coefficient. The process begins by transforming the system of linear Volterra integral equations to form a matrix equation. Then using some transformation, a system of equations is obtained, whose solution is the coefficients of Euler polynomial series. By substituting the obtained coefficients to the series solution, solutions of linear systems of Volterra integral equations are obtained Furthermore the computational test shows that the solution obtained by the propose method is almost equal to the exact known solution
  • No Thumbnail Available
    Item
    Some Thought on Numerical Integration Based on Interpolation
    (2017-11-14) Muhammad, Imran; Karma, Asmara
    We discuss and do some analysis on numerical integration based on interpolation, midpoint, trapezoidal rule and Simpson rule. We end up with some new formulas, which are not mentioned in numerical analysis textbooks. The strategy we discuss, in terms of pedagogy, illuminate how research on mathematics can be carry out.
  • No Thumbnail Available
    Item
    TEKNIK BARU MENYELESAIKAN SISTEM PERSAMAAN DIFERENSIAL LINEAR ORDE SATU NONHOMOGEN
    (2014-03-25) Hendri, Yon; Karma, Asmara; Musraini
    This paper discusses a tecnique to solve a system of first order nonhomogeneous linear differential equations with constants-coefficient by writing it in a matrix form. Then order nonhomogeneous linear differential equations are formed which have coefficients involving matrix coefficient that have been formed and solved using variation of parameter method, hance the general solution is obtained from the differential equations discussed. This solution is focused only for and
  • No Thumbnail Available
    Item
    THIRD ORDER DERIVATIVE FREE ITERATIVE METHOD
    (2014-04-12) Imran, Muhammad; Putra, Supriadi; Karma, Asmara; Agusni
    We propose a modification of Ujevic method for solving a nonlinear equation by introducing two parameters, after aproximating the derivative by a central difference method. We show that the proposed method is of order three. Numerical experiments are in agreement with analytic results. Using some test functions we compare the proposed method with some discussed methods
  • No Thumbnail Available
    Item
    TWO STEP METHOD WITHOUT EMPLOYING DERIVATIVES FOR SOLVING A NONLINEAR EQUATION
    (2014-04-12) Imran, Muhammad; Agusni; Karma, Asmara; Putra, Supriadi
    We discuss an iterative method for finding root of a nonlinear equation employing central differences to avoid derivatives in the method. We show that this two step method is of order three. Numerical simulations show that the method is comparable with others third order methods

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback