Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Lattivah, Zakyatul"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    PREDIKSI PRESTASI AKADEMIK MAHASISWA FMIPA UNIVERSITAS RIAU MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR BERBASIS WEB
    (2021-03) Lattivah, Zakyatul; Bahri, Zaiful
    This study aims to predict the academic achievement of FMIPA Riau University students using the K-Nearest Neighbor algorithm. The results of the predictions are achievement in terms of the category of cumulative grade point average (IPK) "High" or "Low", this is because new students cannot know their estimated future achievements, so with this prediction system new students can see their achievement predictions. in the future (sixth semester) by looking at the school of origin majors, the average national exam, college motivation, and work at the beginning of college which can be used as a reference and motivation for maximum achievement. The system is designed using the PHP programming language and the database server uses MySQL and the system design uses UML. The comparison of training data and test data is 70%: 30%. The results obtained from this study get an average level of accuracy of 80%.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback