Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Rahmadianissa, Thazkia"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    CLUSTERING MENGGUNAKAN ALGORITMA K-MEANS DAN DBSCAN PADA ANGGARAN PENDAPATAN DAN BELANJA DAERAH DI INDONESIA
    (Elfitra, 2022-12) Rahmadianissa, Thazkia; Sirait, Haposan
    The regional government budget is an annual financial plan that affects the Indonesian economy for one year. Administration of APBD data has not been effectively implemented due to limited human resources. Clustering algorithms are used to group provinces based on regional government budget according to data similarities to facilitate the government in future financial planning. In this study using regional government budget data in 2021 using the k-means and DBSCAN methods. The results of this study using k-means with 2 clusters with cluster 1 contain of 33 provinces and cluster 2 contain of 1 province, that is DKI Jakarta. Meanwhile, using the DBSCAN method with 2 clusters, cluster 1 contain of 30 provinces, cluster 2 contain of 2 provinces there are Central Java and East Java, and 2 noise data, there are DKI Jakarta and West Java.
  • No Thumbnail Available
    Item
    CLUSTERING MENGGUNAKAN ALGORITMA K-MEANS DAN DBSCAN PADA ANGGARAN PENDAPATAN DAN BELANJA DAERAH DI INDONESIA
    (Elfitra, 2022-12) Rahmadianissa, Thazkia; Sirait, Haposan
    The regional government budget is an annual financial plan that affects the Indonesian economy for one year. Administration of APBD data has not been effectively implemented due to limited human resources. Clustering algorithms are used to group provinces based on regional government budget according to data similarities to facilitate the government in future financial planning. In this study using regional government budget data in 2021 using the k-means and DBSCAN methods. The results of this study using k-means with 2 clusters with cluster 1 contain of 33 provinces and cluster 2 contain of 1 province, that is DKI Jakarta. Meanwhile, using the DBSCAN method with 2 clusters, cluster 1 contain of 30 provinces, cluster 2 contain of 2 provinces there are Central Java and East Java, and 2 noise data, there are DKI Jakarta and West Java.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback