Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Sari, Rizki Ayu Fitrian"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    PENERAPAN REGRESI KOMPONEN UTAMA ROBUST S-ESTIMATOR UNTUK ANALISIS PENGANGGURAN DI KOTA DUMAI
    (2021-02) Sari, Rizki Ayu Fitrian; Bustami, Bustami
    The least squares method is a method for estimating parameters. This method is not appropriate for data that contains outliers, therefore, a robust regression regression method is used. Robust regression is a regression method that is used when there are outliers that can affect the model. In this study, the robust method used is the S-estimator. This study applies robust S-estimator regression to data containing outliers. A better model is selected based on the RSE and ̅ . The model is applied for the study of the number of unemployed in Dumai City 2006-2019. The independent variables are average length of schooling, net enrollment rate, school enrollment rate, human development index, population growth rate, and the poor. Based on the regression equation used, the study show that the factors affecting the unemployment rate are the average length of schooling and the poor population using the S-estimate regression method.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback