Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Savira, Husna"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    PEMODELAN REGRESI LOGISTIK BINER DENGAN PENDEKATAN BAYESIAN MARKOV CHAIN MONTE CARLO : KASUS INDEKS KEDALAMAN KEMISKINAN DI SUMATERA TAHUN 2021
    (Elfitra, 2023-05) Savira, Husna; Adnan, Arisman
    The Poverty Gap Index (PGI) is the average expenditure gap of each poor population towards the poverty line. This study aims to model PGI data using binary logistic regression with a classical approach using the Maximum Likelihood Estimation (MLE) method and a Bayesian approach using the Markov Chain Monte Carlo (MCMC) method. MCMC is a popular method for obtaining information about the distribution, especially for estimating the posterior distribution in Bayesian inference with the Metropolis-Hasting algorithm. Factors that have a significant influence on the IKK in Sumatera using the Bayesian approach and the classical approach are the same, namely Life Expectancy and per capita expenditure. Based on the results of the classification with training data of 80% and test data of 20% a classification accuracy of 62,50%.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback