PREDIKSI DIAGNOSIS PENYAKIT JANTUNG MENGGUNAKAN METODE RANDOM FOREST

dc.contributor.authorFerdian, Ferdian
dc.contributor.supervisorSalambue, Roni
dc.date.accessioned2023-02-07T02:35:28Z
dc.date.available2023-02-07T02:35:28Z
dc.date.issued2022-11
dc.description.abstractthroughout the body. Heart health must be maintained because the mortality rate caused by heart disease is among the highest in the world. So early action is needed to predict the diagnosis of heart disease as a form of prevention or treatment efforts so that there is no increase in cases of heart disease. Therefore, a system is needed that can help predict the diagnosis precisely and accurately and on time based on a computer. This study aims to build a prediction model for the diagnosis of heart disease using the Random Forest method. This prediction model uses the RSI Ibnu Sina medical record dataset of 336 data, including 268 used as training data and 68 testing data. The data attributes used were 11 attributes, namely gender, age, chest pain, systolic blood pressure, diastolic blood pressure, cholesterol, current blood sugar (GDS), RestingECG, heart rate, ST Slope, and diagnosis. This study produced a prediction model with an accuracy of 85.29% measured using the Confusion Matrix.en_US
dc.description.sponsorshipFakultas Matematika dan Ilmu Pengetahuan Alamen_US
dc.identifier.citationPerpustakaanen_US
dc.identifier.otherElfitra
dc.identifier.urihttps://repository.unri.ac.id/handle/123456789/10844
dc.language.isoenen_US
dc.publisherElfitraen_US
dc.subjectRandom Foresten_US
dc.subjectData Mining.en_US
dc.subjectPredictionen_US
dc.subjectHeart Deseaseen_US
dc.titlePREDIKSI DIAGNOSIS PENYAKIT JANTUNG MENGGUNAKAN METODE RANDOM FORESTen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Ferdian_compressed.pdf
Size:
259.77 KB
Format:
Unknown data format
Description:
artikel
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections