ANALISA PERBANDINGAN PERFORMA ALGORITMA CONVOLUTIONAL NEURAL NETWORK DALAM KLASIFIKASI GAMBAR ABJAD BAHASA ISYARAT INDONESIA

dc.contributor.authorKamandanu, Kamandanu
dc.contributor.supervisorMahdiyah, Evfi
dc.date.accessioned2022-11-15T08:43:53Z
dc.date.available2022-11-15T08:43:53Z
dc.date.issued2022-07
dc.description.abstractBackground clutter is a background in an image that has a lot of noise or objects, making it difficult to focus on one object. Generally, images with a cluttered background are more common than images with a green background. The purpose of this study is to see whether the background image affects the performance of the convolutional neural network algorithm in classifying the Indonesian Sign Language Alphabet (BISINDO). This deep learning model uses 2860 images of primary data for each background with a total dataset of 5720 images, the data that has been collected is divided into training, validation and testing, 3x3 filter size, and a learning rate of 0.001 and 50 epochs. of 0.983, validation of 0.823 and testing of 0.67 for model 1 (Green Background), while for model 2 (Background Clutter) the training accuracy is 0.971, validation is 0.529 and testing is 0.38. It can be concluded tha a pictures with background clutter affects the accuracy of the model.en_US
dc.description.sponsorshipFakultas Matematika dan Ilmu Pengetahuan Alamen_US
dc.identifier.citationPerpustakaanen_US
dc.identifier.otherElfitra
dc.identifier.urihttps://repository.unri.ac.id/handle/123456789/10747
dc.language.isoenen_US
dc.publisherElfitraen_US
dc.subjectBISINDOen_US
dc.subjectCNNen_US
dc.subjectClassificationen_US
dc.subjectModelen_US
dc.subjectClutteren_US
dc.subjectBackgrounden_US
dc.titleANALISA PERBANDINGAN PERFORMA ALGORITMA CONVOLUTIONAL NEURAL NETWORK DALAM KLASIFIKASI GAMBAR ABJAD BAHASA ISYARAT INDONESIAen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Kamandanu_compressed.pdf
Size:
204.43 KB
Format:
Unknown data format
Description:
artikel
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections