MODIFIKASI METODE CAUCHY DENGAN ORDE KONVERGENSI EMPAT

dc.contributor.authorElisabet, Masnida Esra
dc.contributor.authorPutra, Supriadi
dc.date.accessioned2017-01-10T04:30:38Z
dc.date.available2017-01-10T04:30:38Z
dc.date.issued2017-01-10
dc.description.abstractThis article discusses two modification of Cauchy’s method by using Taylor’s expansion of second and third order to solve nonlinear equations. Both methods have order of convergence four and need three function evaluations per step, so that theirs efficiency index is 1.587. Furthermore, the computational results show that the methods converge faster in obtaining a simple root of the nonlinear equations compared to Newton and Cauchy’s method.en_US
dc.description.sponsorshipPutra, Supriadien_US
dc.identifier.urihttp://repository.unri.ac.id/xmlui/handle/123456789/8890
dc.language.isootheren_US
dc.subjectNewton’s methoden_US
dc.subjectCauchy’s methoden_US
dc.subjectorder of convergenceen_US
dc.subjectefficiency indexen_US
dc.subjectnonlinear equationen_US
dc.titleMODIFIKASI METODE CAUCHY DENGAN ORDE KONVERGENSI EMPATen_US
dc.typestudent Paper Post Degreeen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Masnida Esra Elisabet 1203113497.pdf
Size:
84.21 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections