METODE CHEBYSHEV-HALLEY DENGAN KEKONVERGENAN ORDE DELAPAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR

dc.contributor.authorApriliana, Anisa Rizky
dc.contributor.authorPutra, Supriadi
dc.date.accessioned2017-01-09T09:37:00Z
dc.date.available2017-01-09T09:37:00Z
dc.date.issued2017-01-09
dc.description.abstractThis article discusses a new iterative method obtained by combination Cheby shev-Halley method and Newton method. Analytically it is showed that the method at least sixth order convergence and its efficiency index is 1.682. Computational results support the analytic results. Furthermore, computational results show that the method is faster in determining a root of the considered nonlinear equation compared with Newton, Chebyshev and Halley method.en_US
dc.description.sponsorshipPutra, Supriadien_US
dc.identifier.urihttp://repository.unri.ac.id/xmlui/handle/123456789/8882
dc.language.isootheren_US
dc.subjectChebyshev-Halley methoden_US
dc.subjectiterative methoden_US
dc.subjectNewton methoden_US
dc.subjectorder of convergenceen_US
dc.subjectefficiency indexen_US
dc.titleMETODE CHEBYSHEV-HALLEY DENGAN KEKONVERGENAN ORDE DELAPAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEARen_US
dc.typestudent Paper Post Degreeen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
artikel160215.pdf
Size:
75.18 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections