METODE CHEBYSHEV-HALLEY DENGAN KEKONVERGENAN ORDE DELAPAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR
dc.contributor.author | Apriliana, Anisa Rizky | |
dc.contributor.author | Putra, Supriadi | |
dc.date.accessioned | 2017-01-09T09:37:00Z | |
dc.date.available | 2017-01-09T09:37:00Z | |
dc.date.issued | 2017-01-09 | |
dc.description.abstract | This article discusses a new iterative method obtained by combination Cheby shev-Halley method and Newton method. Analytically it is showed that the method at least sixth order convergence and its efficiency index is 1.682. Computational results support the analytic results. Furthermore, computational results show that the method is faster in determining a root of the considered nonlinear equation compared with Newton, Chebyshev and Halley method. | en_US |
dc.description.sponsorship | Putra, Supriadi | en_US |
dc.identifier.uri | http://repository.unri.ac.id/xmlui/handle/123456789/8882 | |
dc.language.iso | other | en_US |
dc.subject | Chebyshev-Halley method | en_US |
dc.subject | iterative method | en_US |
dc.subject | Newton method | en_US |
dc.subject | order of convergence | en_US |
dc.subject | efficiency index | en_US |
dc.title | METODE CHEBYSHEV-HALLEY DENGAN KEKONVERGENAN ORDE DELAPAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR | en_US |
dc.type | student Paper Post Degree | en_US |