KLASIFIKASI ANGKA PENCURIAN DI RIAU DENGAN MULTIVARIATE ADAPTIVE REGRESSION SPLINES (MARS) DAN BOOTSTRAP AGGREGATING MARS

dc.contributor.authorHaura, Zhafira
dc.contributor.supervisorHarison, Harison
dc.date.accessioned2022-10-13T07:19:42Z
dc.date.available2022-10-13T07:19:42Z
dc.date.issued2022-06
dc.description.abstractOne of the nonparametric regression methods that can be used for classification is Multivariate Adaptive Regression Splines (MARS) which is enhanced using bootstrap aggregating (bagging) with 50 replications. This method is applied to conventional crime data, namely cases of theft which can be seen based on crime rates in Riau Province in 2016-2020. The dependent variable used is the theft crime rate, while the independent variables are population density (𝑋!), poverty rate (𝑋"), RLS (𝑋#), and PDRB (𝑋$). This study aims to form the best model and see the results of the classification based on the factors that influence the crime rate indicators in Riau Province. Bagging MARS method with training data of 68% produces a minimum GCV value is 0.08961, while the MARS method is 0.13993 in obtaining the best model. The MARS method yields 60% for accuracy, 80% for sensitivity and specificity 40%. The best accuracy value is 85% with sensitivity is 100% and specificity is 70% using bagging MARS with testing data by 32%. The most influential variable using the MARS method and bagging MARS on the crime rate indicator of theft cases in Riau Province in 2016-2020 are the poverty rate (X") variable with an importance level of 100%.en_US
dc.description.sponsorshipFakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riauen_US
dc.identifier.citationPerpustakaanen_US
dc.identifier.otherElfitra
dc.identifier.urihttps://repository.unri.ac.id/handle/123456789/10711
dc.language.isoenen_US
dc.publisherElfitraen_US
dc.subjectCrime rate indicator of theft casesen_US
dc.subjectclassificationen_US
dc.subjectmultivariate adaptive regression splinesen_US
dc.subjectbootstrap aggregatingen_US
dc.titleKLASIFIKASI ANGKA PENCURIAN DI RIAU DENGAN MULTIVARIATE ADAPTIVE REGRESSION SPLINES (MARS) DAN BOOTSTRAP AGGREGATING MARSen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Zhafira Haura_compressed.pdf
Size:
312.15 KB
Format:
Unknown data format
Description:
artikel
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections