PENERAPAN METODE EXTREME GRADIENT BOOSTING PADA KLASIFIKASI STATUS KEBANGKRUTAN PERSEROAN TERBATAS DI BURSA EFEK INDONESIA

dc.contributor.authorNurleta, Evi
dc.contributor.supervisorHarison, Harison
dc.date.accessioned2023-10-31T04:24:32Z
dc.date.available2023-10-31T04:24:32Z
dc.date.issued2023-07
dc.description.abstractCorporate bankruptcy is characterized by financial difficulties. To classify with the aim of predicting the bankruptcy status of Limited Liability Companies on the Indonesia Stock Exchange in 2021, it can be done using the XGBoost method. The variables used are the financial ratios Net Working Capital to Total Assets (WCTA), Retained Earnings to Total Assets (RETA), Earnings Before Interest and Tax to Total Assets (EBITTA), Book Value of Equity to Book of Debt (BVETA). The bankruptcy status is safe, gray (needs special attention), and distress (bankrupt). Based on the classification results using training data of 80% and testing data of 20%, a classification accuracy rate of 93.00%, 90.95% precision and 90.28% sensitivity is obtained, and it is known that the WCTA and RETA variables are the most important features in classifying bankruptcy classes. The results of this classification can be used for forecasting the bankruptcy of a Limited Liability Company and as a reference for making policies in dealing with bankruptcy.en_US
dc.description.sponsorshipFakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riauen_US
dc.identifier.citationPerpustakaanen_US
dc.identifier.otherElfitra
dc.identifier.urihttps://repository.unri.ac.id/handle/123456789/11190
dc.language.isoenen_US
dc.publisherElfitraen_US
dc.subjectBankruptcyen_US
dc.subjectFinancial Distressen_US
dc.subjectLimited Liability Companyen_US
dc.subjectClassificationen_US
dc.subjectExtreme Gradient Boostingen_US
dc.titlePENERAPAN METODE EXTREME GRADIENT BOOSTING PADA KLASIFIKASI STATUS KEBANGKRUTAN PERSEROAN TERBATAS DI BURSA EFEK INDONESIAen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Evi Nurleta_compressed.pdf
Size:
247.66 KB
Format:
Unknown data format
Description:
artikel
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections