SISTEM DETEKSI TINGKAT KEMATANGAN TANDAN BUAH SEGAR KELAPA SAWIT MENGGUNAKAN METODE CONVNET BERBASIS ANDROID

dc.contributor.authorWardana, Fiqra
dc.contributor.supervisorBahri, Zaiful
dc.date.accessioned2022-09-23T08:20:51Z
dc.date.available2022-09-23T08:20:51Z
dc.date.issued2022-06
dc.description.abstractOne of the oil palms harvesting processes is to determine the maturity level of Fresh Fruit Bunches (FFB). FFB maturity is one of the determinants quality productions of palm oil processing materials. In general, FFB maturity can be checked manually by farmers by direct observation. Manual selection of FFB, of course, requires time and experienced farmers to be able to determine maturity correctly. ConvNet is a machine learning method that can be used to quickly determine the maturity level of oil palm FFB. ConvNet allows the model to recognize the shape, color, and edge of each TBS training data. Using 900 FFB image data, the model can detect the maturity level of oil palm from three classes, namely raw, ripe, and empty bunches. The results of the training model have an accuracy of 86% with a precision and recall of more than 90%.en_US
dc.description.sponsorshipFakultas Matematika dan Ilmu Pengetahuan Alamen_US
dc.identifier.citationPerpustakaanen_US
dc.identifier.otherElfitra
dc.identifier.urihttps://repository.unri.ac.id/handle/123456789/10689
dc.language.isoenen_US
dc.publisherElfitraen_US
dc.subjectAndroiden_US
dc.subjectConvolutional Neural Networken_US
dc.subjectPalm Oilen_US
dc.subjectDetections systemen_US
dc.titleSISTEM DETEKSI TINGKAT KEMATANGAN TANDAN BUAH SEGAR KELAPA SAWIT MENGGUNAKAN METODE CONVNET BERBASIS ANDROIDen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Fiqra Wardana_compressed.pdf
Size:
379.13 KB
Format:
Unknown data format
Description:
artikel
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections