ESTIMATOR GENERALIZED LEAST SQUARE UNTUK SEEMINGLY UNRELATED REGRESSION PADA KASUS INDEKS PEMBANGUNAN MANUSIA DI SUMATERA

dc.contributor.authorRamadhani, Ananda
dc.contributor.supervisorHarison, Harison
dc.date.accessioned2022-03-15T03:52:31Z
dc.date.available2022-03-15T03:52:31Z
dc.date.issued2021-11
dc.description.abstractSumatera is one of the largest islands in Indonesia, and it consists of 10 provinces. Based on data from Badan Pusat Statistik the Human Development Index (HDI) in Indonesia, all provinces on the island of Sumatera have high HDI rates. This study aims to analyze and determine the factors that influence the HDI rate in Province of Sumatera island. Factors thought to be influential are the percentage of poor population (PPM), the level of open unemployment (TPT), literacy rate (AMH) and Gini Ratio. Based on the results of the analysis by comparing the results of Seemingly Unrelated Regression (SUR) estimation of Generalized Least Square (GLS) and also Ordinary Least Square (OLS), it’s concluded that the SUR estimation results with GLS estimate produce a more efficient equation with smaller error. The results of GLS estimation produce a greater coefficient of determination, which is 99.99%, while OLS estimation is 98.86%.en_US
dc.description.sponsorshipJurusan Matematika Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Riauen_US
dc.identifier.otherwahyu sari yeni
dc.identifier.urihttps://repository.unri.ac.id/handle/123456789/10498
dc.language.isoenen_US
dc.publisherperpustakaan URen_US
dc.subjectHuman Development Indexen_US
dc.subjectSeemingly Unrelated Regressionen_US
dc.subjectOrdinary Least Squareen_US
dc.subjectGeneralized Least Squareen_US
dc.titleESTIMATOR GENERALIZED LEAST SQUARE UNTUK SEEMINGLY UNRELATED REGRESSION PADA KASUS INDEKS PEMBANGUNAN MANUSIA DI SUMATERAen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Ananda Ramadhani_compressed.pdf
Size:
232.95 KB
Format:
Unknown data format
Description:
artikel
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections